Individual variation and the roles of L1 and proficiency in the longitudinal L2 development of English grammatical morphemes

Akira Murakami University of Cambridge / University of Birmingham a.murakami@bham.ac.uk

Background

- Describing and explaining individual variation in longitudinal development are critical for a theory of L2 development.
- In order to tackle the issue, we need large empirical data.
- With the advent of large-scale learner corpora, we now have enough data to address the issue.
- Few studies have investigated longitudinal development at a large scale.

Longitudinal Development of Articles

Clustered Development

Aims of the Study

- Investigate whether learners' L1 backgrounds and proficiency affect the longitudinal accuracy transition of L2 English grammatical morphemes.
- Reveal inter-learner variation.

Predictors

- L1 influence is pervasive in L2 acquisition (Jarvis & Pavlenko, 2007). The same is true for the L2 acquisition of English grammatical morphemes (Luk & Shirai, 2009; Murakami, 2013).
- The effect of proficiency on accuracy is prevalent (Thewissen, 2013).
- Given these, the two variables may affect the within-learner developmental patterns as well.

Target Morphemes

- articles
- past tense -ed
- plural -s

Target L1 Groups

- Typologically diverse L1s
 - ► Japanese ► G
 - Korean
 - Spanish
 - Russian
 - Turkish

- German
- French
- Brazilian-Portuguese
- Mandarine-Chinese
- Italian

EF-Cambridge Open Language Database (EFCamDat)

- Essays written at Englishtown, the online school of Education First
- 16 Lessons × 8 Units (A1-C2 in CEFR)
- Each student writes one essay per unit
- Teachers' feedback available on some essays (≒ error tags)
- 140,000 essays by 52,000 learners, totaling 10 million words
- Available at http://corpus.mml.cam.ac.uk/efcamdat/

Accuracy Measure

TLU (Target-Like Use) score was used

number of correct suppliance

 $TLU \text{ score} = \frac{1}{\text{number of obligatory contexts} + \text{number of incorrect suppliance}}$

Two Types of Regression Models

- Mixed-effects model
 - Take into account the dependency of data within individual learners
- Generalised additive model
 - Take into account the nonlinearity of the effects of proficiency
- See if the two analyses converge

Mixed-Effects Model

- A mixed-effects logistic regression model
- Dependent variable: TLU
- Independent variables
 - L1
 - Morpheme
 - Proficiency (standardised)
 - Essay number (standardised)
 - Their two-way interactions
- Random-effects
 - Learner (random-intercept)
 - Morpheme (random-slope)
 - Essay number (random-slope)

Multi-Model Inference

- Compare the following models in order to test the effects of L1 and proficiency.
- Model 1: Maximal model with the full structure just described
- Model 2: Model 1 EssayNum-L1 interaction
- Model 3: Model 1 EssayNum-Proficiency interaction
- Model 4: Model 1 EssayNum-Morpheme interaction
- Null Model: Random-effects only

Model Selection

Likelihood ratio test against

Model	AIC	Model 1		Null Model	
Model 1	72,607			$\chi^{2}(54) = 2462.675$	р < 0.001
Model 2	72,603	$\chi^{2}(9) = 14.210$	<i>p</i> = 0.115	$\chi^{2}(45) = 2448.465$	р < 0.001
Model 3	72,614	$\chi^{2}(1) = 9.225$	<i>p</i> = 0.002	$\chi^{2}(53) = 2453.450$	р < 0.001
Model 4	72,614	$\chi^{2}(2) = 11.256$	<i>p</i> = 0.004	$\chi^{2}(52) = 2451.419$	р < 0.001
Null Model	74,961	$\chi^{2}(54) = 2462.675$	р < 0.001		

Model	Model description
Model 1	Maximal model
Model 2	EssayNum-L1 interaction excluded
Model 3	EssayNum-Proficiency interaction excluded
Model 4	EssayNum-Morpheme interaction excluded
Null Model	No fixed-effects

Model Selection

Likelihood ratio test against

Model	AIC	Model 1		Null	Null Model	
Model 1	72,607			$\chi^2(54) = 2462$	2.675 <i>p</i> < 0.001	
Model 2	72,603	$\chi^{2}(9) = 14.210$	<i>p</i> = 0.115	$\chi^{2}(45) = 2448$	3.465 <i>p</i> < 0.001	
Model 3	72,614	$\chi^2(1) = 9.225$	<i>p</i> = 0.002	$\chi^2(53) = 2453$	3.450 p < 0.001	
Model 4	72,614	$\chi^{2}(2) = 11.256$	<i>p</i> = 0.004	$\chi^{2}(52) = 2451$	1.419 <i>p</i> < 0.001	
Null Model	74,961	$\chi^{2}(54) = 2462.675$	<i>p</i> < 0.001			

Model	Model description
Model 1	Maximal model
Model 2	EssayNum-L1 interaction excluded
Model 3	EssayNum-Proficiency interaction excluded
Model 4	EssayNum-Morpheme interaction excluded
Null Model	No fixed-effects

Random-Effects

		Model 2	Null Model
Factor	Random Effects	SD	SD
Learner	Intercept	0.501	0.758
	Morpheme		
	Past tense <i>-ed</i>	0.919	1.140
	Plural <i>-s</i>	0.510	1.071
	EssayNum.Standardized	0.297	0.327

	Random-E	ffects	The model without any predictors
		Model 2	Null Model
Factor	Random Effects	SD	SD
Learner	Intercept	0.501	0.758
	Morpheme		
	Past tense <i>−ed</i>	0.919	1.140
	Plural <i>-s</i>	0.510	1.071
	EssayNum.Standardized	0.297	0.327

Random-Effects

		Model 2	Null Model
Factor	Random Effects	SD	SD
Learner	Intercept	0.501	0.758
	Morpheme		
Individual	Past tense <i>-ed</i>	0.919	1.140
in absolute	Plural -s	0.510	1.071
accuracy	EssayNum.Standardized	0.297	0.327

Random-Effects

		Model 2	Null Model
Factor	Random Effects	SD	SD
Learner	Intercept	0.501	0.758
	Morpheme		
Individual	Past tense <i>-ed</i>	0.919	1.140
in absolute	Plural -s	0.510	1.071
accuracy	EssayNum.Standardized	0.297	0.327
cf. Essay	Num.Standardized in fixed	-effects = 0	.140
(1 SD of Learner Corpus F	EssayNum ≈ 2/3 CEFR lev Research 2013 (29 September, 2013) 28	el) Solstrand Hotel	& Bad, Bergen

Demonstration of Random-Slopes

Demonstration of Random-Slopes

Random-Effects

		Model 2	Null Model
Factor	Random Effects	SD	SD
Learner	Intercept	0.501	0.758
IDs in the rate of accuracy increase	Morpheme		
	Past tense <i>-ed</i>	0.919	1.140
	Plural <i>-s</i>	0.510	1.071
	EssayNum.Standardized	0.297	0.327

Findings Based on Mixed-Effects Modeling

- Large individual variation in
 - overall accuracy
 - accuracy difference between articles and the other morphemes, and
 - the rate of development
- Despite large individual differences, proficiency and morpheme explain the variation to a certain degree
 - Developmental shape is different depending on learners' overall proficiency and on the morpheme concerned
 - But no evidence for differing rate of development by L1

Fitted Values of Model 2 for Lowvs High-Proficiency Learners

Cross-Sectional View of the Development

Generalised Additive Model (GAM)

- The relationship between independent and dependent variables is estimated by a nonlinear function.
- GAMs are semi-parametric, allowing both parametric and nonparametric terms in one model.
- In the present study,
 - L1, morpheme, and their interaction were entered as parametric terms.
 - A tensor product spline for the interaction between the overall proficiency and the within-learner development was obtained for each L1-Morpheme pair.

Models Considered

- Similar to the mixed-effects models
- Model 1: Maximal model
- Model 2: Tests the effect of L1
- Model 3: Tests the effect of Proficiency
- Model 4: Tests the effect of Morpheme

Models Considered

- Similar to the mixed-effects models
- Model 1: Maximal model
- Model 2: Tests the effect of L1
- Model 3: Tests the effect of Proficiency
- Model 4: Tests the effect of Morpheme

Article Development

2.0

1.5

Essay Number (Standardised) 0.0 0.0 0.0 0.1 0 0.0 0 0.0 L1 Japanese

-1.0

-0.5

L1 Turkish

L1 Brazilian

L1 Chinese

L1 German

0.5

0.0

1.0

1.5

2.0

L1 Russian

Proficiency (Standardised)

Findings Based on the GAM

- Striking nonlinearity in morpheme accuracy development
- The nonlinear effects further interact with L1, proficiency, and morpheme, that is, the developmental patterns vary across learners' L1s, proficiency levels, and morphemes.
- When nonlinearity is taken into account, both L1 and proficiency affect the developmental patterns of accuracy.

Regression Summary

- We observe significant individual variation. However, the developmental patterns are not random.
- Proficiency systematically affects the developmental pattern
 - e.g., Ceiling effect
- L1 influence not clear
 - The mixed-effects analysis failed to show the significance of L1 influence

Interpretation

- Dynamic systems theory (DST; Verspoor, de Bot, & Lowie, 2011)
- variability
 - one's linguistic system = dynamic system
 - Dynamic systems are in complex interactions
 - constant change with chaotic variation
 - complete interconnectedness
- stability
 - attractor state

Conclusion

- Significant individual differences are present in L2 morpheme development.
- Systematicity is present at the same time.
- They are in line with DST.

References

Jarvis, S., & Pavlenko, A. (2007). *Crosslinguistic influence in language and cognition*. New York: Routledge.

Luk, Z. P., & Shirai, Y. (2009). Is the acquisition order of grammatical morphemes impervious to L1 knowledge? Evidence from the acquisition of plural *-s*, articles, and possessive *'s*. *Language Learning*, *59*(4), 721–754. doi:10.1111/j.1467-9922.2009.00524.x

 Murakami, A. (2013). Cross-linguistic influence on the accuracy order of L2 English grammatical morphemes. In S. Granger, S. Gaëtanelle, & F. Meunier (Eds.), *Twenty years of learner corpus research. Looking back, moving ahead: Corpora and language in use - Proceedings 1* (pp. 325–334). Louvain-la-Neuve: Presses universitaires de Louvain.

- Thewissen, J. (2013). Capturing L2 accuracy developmental patterns: Insights from an error-tagged EFL learner corpus. *Modern Language Journal*, *97*(S1), 77–101.
- Verspoor, M., de Bot, K., & Lowie, W. (2011). *A dynamic approach to second language development: Methods and techniques*. Amsterdam: John Benjamins.